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ABSTRACT: Any pair of vertices in a U-connected non-bipartite k-regular
graph are joined by a Hamilton path or a path of length at least 3k-6.
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The topics about Hamilton cycles, circumferences and Hamiltonian

connectivities of regular graphs have been interesting many mathematicians

in recent years ([2],[1],[4],[7],[3],[6]).

In this paper, we will investigate the length of a longest path joining

any pair of vertices of regular graphs and establish the following theorem.

THEOREM 1

Let G be a 4-connected non-bipartite k-regular graph. Then any pair

of distinct vertices of G are joined by a Hamilton path or a path of

length at least 3k-6.

In a sense, this theorem is a generalization of the rollowing results.

(i) (Bollobas and Hobbs [1]) Any 2-connected k-regular graph of order

9
at most -k contains a Hamilton cycle.

(ii) (Jackson [4]) Any 2-connected k-regular graph of order at most 3k

contains a Hamilton cycle.

(iii) (Zhu, Liu and Yu [7]) Any 2-connected k-regular graph of order at

most 3k+3 contains a Hamilton cycle.

(iv) (Fan [3]) The length of a longest cycle in a 3rconnected

k-regular graph of order n is at least min{n,3kl.

(v) (Zhang and Zhu [6]) Any pair of vertices of a 3mconnected

non-bipartite k-regular graph of order at most 3k-4 are joined by

a Hamilton path.

The condition of 4-connectivity in the theorem cannot be reduced. A

3-connected k-regular graph of order 3k 3 containing no path of length at

least 2k 3 joining a pair of vertices can be constructed as follows. Let

k-3h. Let G1 ,...,G 9 be nine disjoint copies of complete graph Kh and
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vl,v 2 , v3  be three distinct vertices. Join an edge between each pair of

vertices in G3i+1 G3i+2 G3i+3 for i=0,1,2, and join an edge between v

and each vertex of G3i+j for i=0,1,2 and j=1,2,3. The induced graph

contains 9h+3 vertices and is 3h-regular 3-connected, in which v. and v
I J

are not joined by any path of length longer than 6h+2 for i,j,c{1,2,31.

(See fig. 1).

Actually, we can establish a result stronger than Theorem 1.

THEOREM 2. Let G be a L-connected graph and x,y be a pair of distinct

vertices of G such that

(i) d(v)=k for any vertex vEV(G)\{x,y},

(ii) d(x), d(y) < k.

Then the length of a longest path joining x and y is at least

(i) min{ I V(G) 1-1, 3k.-6} if G is not a bipartite graph, or G is a

bipartite graph and x, y belong to deferent parts of the

bipartition of G;

(ii) mini{ I V(G)I -2, 3k-6 if G is a bipartite graph and x,y belong

to the same part of the bipartition of G.

Let G=(V,E) be a graph with vertex set V and edge set E. Let

P=U0 .--up  be a path of G. For 0 < i, j < p, the segment u ... u. of P

is denoted by u Pu if i < j or u Puj if i > j. The length of a pathIJ -1.3

P is the number of edges in P and is denoted by Z(P). Let H be a

subgraph of G. Let w,wr be two vertices of H. The length of a longest
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path of H joining w,w' is denoted by LH(ww'). Let v be a vertex of

G. The set of vertices of H adjacent to v is denoted by NH(v) and the

number of vertices of NH (v) is denoted by dH (v). When V(H)=V(G), we

simply write d(v) and N(v) instead of dG (v) and NG(v). Let P=u o...u p

be a path of G and X be a subset of V(P). Denote

+1
X f- u+1 =U .EXI

and X -  a =- U iEx X

Let E(H,H') be the set of all ordered pairs of vertices (x,y) such that

(x,y).EE(G) and xEV(H), yV(H'). And let E(H,H') I = e(H,H'). Note that if

V(H)nV(H') 0, each edge (x,y) in the induced subgraph G(V(H)nV(H')) will

counted twice in e(H,H') since the ordered pairs (x,y) and (y,x) are

considered deferent in E(H,HI'). Thus d(v)-e(v,G) for any vertex v of

of G and I d(v)-e(H,G) for subgraph H of G.
vEV(H)

PROOF OF THEOREM 2

The theorem will be proved by contradition. Suppose that the length of

a longest path P-v o.-v p  joining x-v0  and y-vp is less than 3k-6 and

G\V(P) is not empty.

PART ONE. In this part, we will show that G\V(P) is an independent set

of G. The following lemmas will be applied in this part.

LEMMA 1.1. (Lemma 4, [3]) Let H be a 2-connect.d graph and Qu 0 ...uq

be a longest path of H. Then

LH (X,y) > min{d(u 0 ),d(u q )}

for any pair of distinct vertices x and y in H.
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Let C be a set and {A ,...,A a, {B,-..,B hI be partitions of C such

that a > 2 and IfA nBj < 1 for any jEl1,'',al and any jE{1,...,h}. If

B I nA J, Bji nA f and Bi+= .... Bj_-- ¢

for some W,eEj1,...,a and pJ, then {i,...,jj is called a closed

extendible interval of {B ,.--,Bhl.

LEMMA 1.2 (Lemma 3.2, [6]) Let C be a set, {A ,...,A } and {B,,... hi

be partitions of C defined as above. If s is an integer such that

a> s and I A I > s for each lE{1,...,cl, then {BI,...,Bh} has at least

s-1 closed extendible intervals.

Suppose that G\V(P) is not an independent set and let W 0  be a

component of G\V(P) which contains at least two vertices. Let

T1...,T t be all end-blocks of W (An end-block of W 0  is a block of

W, which contains at most one cut-vertex of W0.

I. We claim that there exists a longest path Qi= x1 ... x in each T.
1 1 q .

such that

f (x 1 ) < L(x) and x1 is not a cut-vertex of W0 , and

0 0 q

(ii) dw (Xi) is as big as possible.

Let R=yi .. Yr be a longest path in T i such that dw0 ( 0
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(c). If y1  is a cut-vertex of W0  and dT (yI ) > 2, then there is another01

longest path yyy+Ryr or y rRyL+yl Ry satisfying (i) for any

y+EN(Y)\{y 1. Of all longest paths in T. satisfying (i), let

Q 1 ..x I be the one with the largest dW (x1). If y is a cut-
1 q 0 1

vertex of W0  and dT.(Y,)=!, then IT, 1=2 and R=y y2 since T is a
1

block. Hence dW (Y2 )=1 and dWo (y) > 1 because y1  is a cut-vertex of

WO. It contradicts the assumption that dWo (yI) < d (y r).

II. Let d=max{d (xi):i=1,...,t}. Without loss of generality, let
W0

d=d, (x).
"0

(i) When d > 2 and N_ (x )ncut-veric-3 of W1-0, lt Z- N- (x.).
Q 1

(ii) When d> 2 and x is a vertex of N 1(X )ntcut-vertices of Wo1.c Q, 1

Let Z=[NQ 1(x 1)\{x 11] u {x~j.Q1I c I

In both cases (i) and (ii), we have that I Z - j NQ1 (x I ) j=dW (x1)-d, and
Qy 1em0 1

by Lemma 1.1,
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L (z,z')=L (z,z')

> minld (x ),d (x q )}
T T1  q1

=d (x
T 1

=dw (x1 )
W0 1

=d

for each pair of distinct vertices, z,z'EZ V(T ). If zEZnV(T1 ) and

2
z'E Z\T we have that z'=x2 and

LW (z,zx) > L) (z'x ) 1s2
o W c LW 0 (e 1i

>L (z'x 1)T Lc

> d

By the choice of Q and xi, it follows that

1

d=do(x) > Wo(Z)

for eah z6Z.

(iii) When d-1, T is a single edge (x1I, x ). Hence, x is a degree

one vertex of W and x2  is either a cut-vertex of W if WoJT , or a

0 2 Wo-T I , 0Z{x1,2.

degree one vertex of W if W -T if WTthen let Z-x,1.If
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1 02 '(x 1  d
W0\Td , by the choice of x we must have that d(x < dW i) and

0 Id01 0

x is a degree one vertex of W0. Then let

Thus in either case, dw (z)=1 for any z Z.

So we always have that

I Z = max{d,2}, ( . . .. ()

LW (z,z') > d, . . . . . (2)

d w(z) < d and d (z) > k-d ..... (3)

for each pair of distinct vertices z and z' of Z. And

IT I  > d+1 . . . . (4)

since d=d (XI )d (X ).
W 01 T 1  1

III. We claim that I < d < k-4.

Suppose that d > k-3. Since G is 4-connected, there are four

intermediately disjoint paths P =v ... x joining T and P for

,. where {v i1' 2v 3v i4 I are distinct vertices of P,

0 < i 1 < i2 < 1 3 < 14 < p, ix1 ,x2,x 3,X} belong to T, and

I O,. ., 1 1 - in{ I T 1 ,4l.
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Let R be a path joining x and x in T such that R is of

length at least d if x PJx + (by Lemma 1.1), or R =x if x ×X Then

M~v. Pv. ) > Z(v. P x R P +iv ) > d+2

if x Jx+ I , or Z(vi Pv. ) > (v.i P x P +i ) > 2
PI +i

if x x since P is a longest path joining v0 and v .

If I TI1 > 4, then {x 1 ,x 2 ,x 3 ,x 4 J are a set distinct vertices and

3Z(P) > IZ (v i Pv i
W=1 P I

> 3(d+2)

> 3k.3 (by d > k.-3).

It contradicts the assumption that Z(P) < 3k-6. Therefore I T 1 < 3 and

some xi and x. of {Xl,x 2 ,x 3 ,x4} are the same vertex. However,

3
3k-7 > (P) > I (vi Pvi

> i Z(vi P v i 11+ + Z(v Pv i P

> (d+2)( I I - )+2 ( 4- 1 T,

- d( I T, I-1)+6

> d 2+6 (by (4))

> k2-6k+15 (by d > k-3).



2_Thus 0 > k -9k 22. But the value of K 29k+22 is always positive for any k.

It leads a contradition and follows our claim.

IV. Now we wish to show the following inequality

Z(P) > (k-d-1)(d+2) . . . . . (5)

Let z,z' be a pair of distinct vertices of Z. We have known that

dp(z), dp(z') > k - d and ZW (z,z') > d (by (2) and (3)). Let
0

I Np(z)n Np(z')I = c(z,z'). Since P is a longest path joining v0 and

Vp, Np (z)uN p(z') does not contain two consecutive vertices of P. Let

{v. ,-..,v. }=Np(z)u Np(z'). Then [vi Pv ]\[Np (z)uN p(z')] contains r"1
1 r 1 r

open segments. A segment v Pv. is\called extendible with respect to3. 3. +

{z,z't if either v.iN(z) and v. EN(z') or vi EN(z') and v. EN(z).
10+1 6 '0+1

Otherwise, it is called unextendible. It is not very hard to see that P

has at least o(z,z') -1 extendible segments with respect to {z,z'}. Since

P is a longest path joining v0 and vp and LWo(z,z') > a, each

entendible segment is of length at least d+2 and each unextendible segment

is of length at least two.

(i) If there is a pair of distict vertices {Zl,z 2 } of Z such that P

has a(z I , z 2 ) or a(z ,z )-1 extendible segments with respect to

jzoZ, 21 then one of INp(z 1 ),Np(z 2 )1 must be a subset of another one and
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\=mi -Np(Z1 ) I, I Np(Z 2) > k-d.

So L(P) > (total length of all extendible segments)

S(d+2)(c(z1,z 2 )-1)

> (d+2)(k-d-1). (since a(zl,Z 2) > k-d)

Thus we have established the inequality (5) in this case, and therefore we

will asume that P has at least a(z,z')+1 extendible segments with

respect to any pair of distinct vertices {z,z'I of Z.

k
(ii) Case 1. d <-- 2

Let a = max {a(z,z') i z,z' are a pair of distinct vertices of Z1.

Choose a pair of distinct vertices zI and z2 of Z such that a(z 1,z2) a

and let r = N(zl ) U Np(Z 2 ) . It is clear that

r+a = N(z 1 ) I + I Np(z 2 ) I > 2(k-d) ...... (6)

r > I Np(z ) I k d ...... (7)

Since P has at least a+1 entendible segments with respect to Zlz2},we

have that

(P) / (total length of all extendible segments with

respect to {z,z 2} +

(total length of all unextendible segments with

respect to {z1 ,z2 1)

> (d+2)(a+l) + 2[(r-1)-(a 1)]

- 2r + ad + d -2

> 212(k-d)-a] + ad + d - 2 (since r > 2(k-d) -a by (6))
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= 4k-d - 2a + ad + d - 2

= (4k-2d) -2d + (G+I)(d-2)

k
> 3k - 2d + (a+1)(d-2) (since d < -

Thus 3k - 7 > Z(P) > 3k - 2d + (a+1)(d-2) ...... (8)

if a > 1, by (8), we have that

3k - 7 > 3k -2d + 2(d-2)

= 3k - 4.

It is a contradiction and hence we have that a G 0. If d < 4, by (8), we

have that

3k - 7 > Z(P) > 3k .-2d + (d-2) (since a=0)

> 3k - 6 (since d < 4).

It is also a contradiction and therefore we must have that d > 5. Note that

I Z J> d > 5, let z,z',z" be three distinct verticies of Z. By the

definition of a and a=O, the subsets Np(z), Np(Z') and Np(Z") of V(P)

are pairwise disjoint. Hence

Np(z)U NP(Z')U Np(z") 1 > 3(k-d)

and P has at least 3(k-d)-l segments each of which is of length at least

two. So

Z(P) > 2[3(k-d)-1]

, 6k - 6d 2

k
3k - 2 (since d )

It contradicts that Z(P) < 3k - 7.
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k
(iii) Case 2. d >

Let C=E(Z,P)

be a set and

{Az=E(z,P):for each ZEZI

and {Bi=E(Z,vi):for each V EV(P)}

be partitions of C. Note that I{A} = Z -d > k-d and A Az I = dp(z) > k-d

for any ZEZ (by (3)), j AznB. I< 1 for any zEZ and viEV(P). We can apply

Lemma 1.2 on C and these two partitions of C. Thus P has at least

krd1 extendible segments each of which is of length at least d+2 and

therefore

Z(P) > (total length of all entendible segments)

> (d+2) (k-d-l)

and the inequality (5) holds for all cases.

V. Since 1 < d < k-4, the minimum value of (d+2)(k-d-1) is 3k-6 It

contradicts that (P) < 3k-6 and therefore, G\V(P) is an independent

set.

Part two.

It has been shown in part one that W-G\V(P) is an independent set.

Let w W. Following [5], put Y0 -p and for i > 1, put

Xi-N(Yi.ufW})

and Y I{vi EV(P): vj_1X i and v j+1 EX

Thus N(w)-X 1 X2 .. and 0
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Put X= u X. and Y= u Y. The follow lemma has been proved in [6] and
i.1 i=1

will be applied in this part of the proof.

LEMMA 2.1.

(i) (direct conclusion of the definition) YEcV(P)\Jvv p} and

y=(X -p) UIU (X np)-1

(ii) (Lemma 4.4. [6]) X does not contain two consecutive vertices

of P.

(iii) (Lemma 4.4. [6]) XnY=p.

(iv) (Lemma 4.7. [6]) YUW is an indpendent set of G, N(Y)cV(P) and

N(Yu{w}).XSV(P).

(v) e(X,Yu{w})=k( 1Y +1) and e(V',Yu{w})-O for any subset V' of

V(G)\X.

Proof. We only need to prove (v). By (i) v ,v p4yU{w, it follows that

d(u)-k for any uEYU{w}. Since X-N(Yu{w}), e(Yu{w},X)-e(Yu{w},G)-k I Yu{w}j

and N(YU{wh)nv'=o for any subset V' of V(G)\X.

Put IX -X and I Y  
. Then P\XuY is a union of at most X"'+l

segments of P. Let S1 ,...,St_1  be the segments of P\XuY not containing

v0  and v p. Let S (or S t) be the segment of P\XuY containing v0  (or

v , respectively) if v0  (or v , respectively) does not belong to X.

Obviously, SO- (or St- ¢ ) if v 0EX (or v pX, respectively). It is easy
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t
to see that IS.I > 2 for 1 < i < t-1 and t=x-p. Let S= u S . Here

i=0

Here V(P)=XuYuS, by (i) and (iv) of Lemma 2.1.

Case 1. Sfp.

t

Let Z.=S n(XuX - ) and Z= u Z.. We have that
1=0

LEMMA 2.2 (Lemma 4.8, [6])

e(Z,S) < (t-A)(I S j "t+3)

where X=O if S0 uStf and X=1 if S uS t=

and

LEMMA 2.3 (Lemma 4.9, [6])

e(X,W\tw}) > e(Z,W\{w}).

Now we can prove our theorem in this case. Since

kX > e(X,G) > e(X,Z)+e(X,Yu{w}).e(X,W\{wl)

and

k IZI =e(Z,G)-e(Z,X)+e(Z,Yu{wf)+e(Z,S)+e(Z,W\{w}),

we have that

kX-e(X,Yu{w})-e(X,W\{w}) > e(X,Z)

-e(Z,X)

=k Z he(Z,S),-e(Z,W\{w})-e(Z,Yu{w}).

Thus

kx-k(+1 )-e(X,W\{w})

> k I Z he(Z,S)ce(Z,W\{w)

by (v) of Lemma 2.1. Note that X-*-t and

e(X,W\{w}) > e(Z,W\fw})

(by Lemma 2.3), it follows that
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e(Z,S) > -kt~k+k I Z

When So0LStj, I Z I > 2t-1. By Lemma 2.2,

t(SI -t+3) > -ktk+k(2t-1).

Simplifying the above inequality, we have that

I S I> t-3+k. . . . . . (9)

When So uSt-- , IZI =2(t-1). By Lemma 2.2,

(t-1)(I SI -t+3) > -kt+k 2k(t-1)

Simplifying the above inequality, we obtain the inequality (9) again. Since

V(P)-SuXuY, and t+'.X > I N(w) J =k,

z(P)+1= V(P) I I s H x H Y~ I

> (t-3+k)+X+ip (by (9))

= k+2x-3

> 3k-3

It contradicts that (P) < 3k-6 and therefore the path joining v0 and v
P

is of length at least 3k-6 in the case of S .

Case two. S= . In this case, we must have p-Z(P) is even and

X-1v 2 :i,'...', P1 , Y=[v 2 1 _:i=l,.'', E 1. Thus YUwI - X • We claim

that X is also an independent set and N(X)SYu{wJ. By (v) of Lemma 2.1, we

have that

e(Yu{ w,X)-k I YuJ{w} k x I.
Since the maximum degree of G is k, all neighbors of every vertex of X

are contained in Yujwf.

Moreover, by (iv) of Lemma 2.1, both X and Yu{w} are independent

sets and

E(X,Yu{w })E(X,G)-E(G,Yu{Jw}).
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The connectivity of G implies that V(G)=XuYu{wj. Thus (X,Y {w}) is a

bipartition of G and vov p are joined by a path of length I V(G) -2.
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